SMAQMD BACT CLEARINGHOUSE

CATEGORY Type: OVEN/KILN				
BACT Category: Minor Source BACT				
BACT Dete	ermination Numb	er: 265 BACT Determination Date: 8/25/2020		
		Equipment Information		
Permit Number: 26573 Equipment Description: Unit Size/Rating/Capacity: Equipment Location:		DRYING OVEN 14 MMBtu/hr, direct & natural gas-fired HUHTAMAKI, INC		
		8450 GERBER RD SACRAMENTO, CA		
		BACT Determination Information		
District	Contact: Permi	tting Section Phone No.: (279) 207-1122 email: permitting@airquality.org		
ROCs	Standard:	No standard		
	Technology Description:			
	Basis:			
NOx	Standard:	20 ppm @ 3% O2		
	Technology Description:	Ultra-Low Nox Burner		
	Basis:	Achieved in Practice		
SOx	Standard: Technology Description: Basis:	Natural gas fueled Achieved in Practice		
PM10	Standard: Technology Description: Basis:	Natural gas fueled Achieved in Practice		
PM2.5	Standard: Technology Description: Basis:	Natural gas fueled Achieved in Practice		
CO	Standard: Technology Description: Basis:	395.6 ppmvd @ 3% O2 Achieved in Practice		
LEAD	Standard: Technology Description: Basis:	N/A		
Commente		IACT #168 (expired 10/31/19).		

BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

	DETERMINATION NO.:	265
EXPIRED	DATE:	April 14, 2020
	ENGINEER:	Michelle Joe
Category/General Equip Description:	Drying Oven	
Equipment Specific Description:	Direct Fired, Natural Gas-F Paper Products, <u><</u> 20 MMBt	
Equipment Size/Rating:	Minor Source BACT	
Previous BACT Det. No.:	168	

This Best Available Control Technology (BACT) determination will update Determination #168 which was made on October 31, 2017 for a 14 MMBtu/hr natural gas-fired drying oven under P/O 25271 where the products of combustion come into direct contact with the molded paper products (i.e., school lunch trays) to be dried. This source category includes emissions from the decomposition of cellulose as the molded paper products are dried (drying emissions) and from natural gas combustion (combustion emissions).

The District reviewed all previously reviewed BACT clearinghouses and rules in BACT #168 and determined that no significant changes have occurred since the previous BACT #168 evaluation.

Therefore, all other considerations made under the previous BACT will remain the same as reviewed below, unless otherwise noted.

BACT & T-BACT Determination Drying Oven, Direct Fired, Natural Gas-Fired Dryer for Molded Paper Products, ≤ 20 MMBtu/hr Page 2 of 14

BACT/T-BACT ANALYSIS:

A. ACHIEVED IN PRACTICE (Rule 202, §205.1a):

The following control technologies are currently employed as BACT/T-BACT for direct fired, natural gas-fired drying ovens rated ≤ 20 MMBtu/hr (not necessarily for drying molded paper products) by the following agencies and air pollution control districts (note: although drying emissions were evaluated as part of this BACT determination, no Achieved in Practice BACT standards were found for drying emissions):

US EPA

BACT: Source: EPA RACT/BACT/LAER Clearinghouse (A)

RBLC ID: <u>NC-0115</u> (1/6/2007) for a Dryer or Oven, 5.40 MMBtu/hr		
VOC	No standard	
NOx	18.0000 ppm, use of low-NOx burner	
SOx	No standard	
PM10	No standard	
PM2.5	No standard	
СО	No standard	

(A) See Attachment A for a summary of the EPA BACT Clearinghouse determinations reviewed.

T-BACT: There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

<u>40 CFR Part 60 – New Source Performance Standards (NSPS)</u>: There are currently no 40 CFR. Part 60 NSPS sections that apply to this source category.

<u>40 CFR Part 61 – National Emission Standards for Hazardous Air Pollutants (NESHAPS)</u>: There are currently no 40 CFR, Part 61 NESHAPs that apply to this source category.

<u>40 CFR Part 63 – NESHAPS for Source Categories (MACT Standards)</u>: There are currently no 40 CFR, Part 63 NESHAPs that apply to this source category.

Drying Oven, Direct Fired, Natural Gas-Fired Dryer for Molded Paper Products, < 20 MMBtu/hr Page 3 of 14

California Air Resources Board (CARB)

BACT: Source: <u>ARB BACT Clearinghouse</u> (A)

For Dryer	For Dryer or Oven, Direct or Indirect		
VOC	N/A – No BACT determinations found		
NOx	30 ppmvd corrected to 3% O ₂		
SOx	N/A – No BACT determinations found		
PM10	N/A – No BACT determinations found		
PM2.5	N/A – No BACT determinations found		
СО	N/A – No BACT determinations found		

(A) See Attachment B for a summary of the ARB BACT Clearinghouse determinations reviewed.

T-BACT: There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

ARB Airborne Toxic Control Measures (ATCM):

There are currently no ATCMs that apply to this source category.

Sacramento Metropolitan AQMD

BACT: Source: SMAQMD BACT Clearinghouse

BACT #168 for Drying Oven, 14 MMBtu/hr, Direct & Natural Gas-Fired (10/31/17)		
VOC	No standard	
NOx	20 ppmvd corrected to 3% O ₂ , Ultra Low-NOx burner	
SOx	Natural gas fueled	
PM10	Natural gas fueled	
PM2.5	5 Natural gas fueled	
со	395.6 ppmvd corrected to 3% O ₂	

<u>T-BACT</u>: There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

Rule 419 – NOx from Miscellaneous Combustion Units (amended 10/25/18)

This rule applies to any miscellaneous combustion unit with a total rated heat input capacity of 2

Drying Oven, Direct Fired, Natural Gas-Fired Dryer for Molded Paper Products, \leq 20 MMBtu/hr Page 4 of 14

MMBtu per hour or greater located at a major stationary source of NOx (\geq 25 TPY of NOx) or with a total rated heat input capacity of 5 MMBtu per hour or greater located at any area source of NOx (< 25 TPY of NOx). Gaseous fuel-fired ovens are required to meet the following NOx and CO emission limits:

Table 1: Miscellaneous Combustion Units Emission Limits Expressed in ppmv @ 3% O ₂				
Equipment Category	NOx Limit ppmv @ 3% O₂ (Ib/MMBtu)		CO Limit ppmv @ 3% O ₂	
	Effective (see Rule 419, Section 401)			
Gaseous Fuel-Fired Equipment	Process Temperature		(Ib/MMBtu)	
Equipment	< 1200 °F	<u>></u> 1200 °F		
Oven, Dehydrator, Dryer, Heater, or Kiln	30 (0.036)	60 (0.073)	400 (0.30)	

South Coast AQMD

BACT: Source: <u>SCAQMD BACT Guidelines for Non-Major Polluting Facilities (amended</u> 2/1/2019), page 45

For Dryer or Oven – Direct and Indirect Fired		
VOC	No standard	
NOx	30 ppmvd @ 3% O ₂ (04-10-1998)	
SOx	Natural gas (10-20-2000)	
PM10	Natural gas (10-20-2000)	
PM2.5	No standard	
СО	No standard	

Source: SCAQMD LAER/BACT Determinations(A)

For Dryer or Oven – Others, Direct and Indirect Fired (1 MMBtu/hr direct hot air dryer and 1 MMBtu/hr tunnel dryer, 6/15/2001)		
VOC	No standard	
NOx	20 ppmvd @ 3% O ₂ , Low-NOx burner	
SOx	No standard	
PM10	No standard	
PM2.5	No standard	

For Dryer or Oven – Others, Direct and Indirect Fired (1 MMBtu/hr direct hot air dryer and 1 MMBtu/hr tunnel dryer, 6/15/2001)

CO No standard

(A) See Attachment C for a summary of the SCAQMD BACT determinations reviewed.

T-BACT: There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

Regulation XI, Rule 1147 - NOx Reductions from Miscellaneous Sources (amended 7/7/2017) This rule applies to ovens, dryers, dehydrators, heaters, kilns, calciners, furnaces, crematories, incinerators, heated pots, cookers, roasters, fryers, closed and open heated tanks and evaporators, distillation units, afterburners, degassing units, vapor incinerators, catalytic or thermal oxidizers, soil and water remediation units and other combustion equipment with nitrogen oxide emissions that require a District permit and are not specifically required to <u>comply with a</u> <u>nitrogen oxide emission limit by other District Regulation XI rules</u>.

SCAQMD Rule 1147 Emission Standards ppmvd @ 3% O₂ or Ib/MMBtu heat input Rule 1147 §(c)(1), Table 1 for NOx			
Equipment Category	Process Temperature		
Gaseous fuel-fired equipment	≤ 800° F	> 800 ° F and < 1200° F	≥ 1200 ° F
Oven, Dehydrator, Dryer, Heater, Kiln, Calciner, Cooker, Roaster, Furnace, or Heated Storage Tank		30 ppm or 0.036 lb/MMBtu	60 ppm or 0.073 lb/MMBtu

Note: <u>Rule 219</u> exempts combustion equipment firing natural gas, for which the maximum heat input is 2 MMBtu/hr or less and for which there are no other emissions other than products of combustion (except for food ovens rated \leq 2 MMBtu/hr), from the requirement to obtain a written permit. Therefore, in practice, the BACT, LAER and Rule 1147 standards only apply to drying ovens with no other emissions other than products of combustion with a heat input greater than 2 MMBtu/hr.

Drying Oven, Direct Fired, Natural Gas-Fired Dryer for Molded Paper Products, < 20 MMBtu/hr Page 6 of 14

San Diego County APCD

BACT: Source: NSR Requirements for BACT (dated 6/2011)

For natural gas-fired drying oven		
VOC	N/A – No BACT determinations found	
NOx	N/A – No BACT determinations found	
SOx	N/A – No BACT determinations found	
PM10	N/A – No BACT determinations found	
PM2.5	N/A – No BACT determinations found	
СО	N/A – No BACT determinations found	

T-BACT: There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

<u>Regulation 4, Rule 68 – Fuel-Burning Equipment – Oxides of Nitrogen (effective 9/20/1994)</u> This rule does not apply to fuel burning equipment which has a maximum input rating of < 50 MMBtu/hr.

Bay Area AQMD

BACT: Source: BAAQMD BACT Guideline

For natura	For natural gas-fired drying oven		
VOC	N/A – No BACT determinations found		
NOx	N/A – No BACT determinations found		
SOx	N/A – No BACT determinations found		
PM10	N/A – No BACT determinations found		
PM2.5	N/A – No BACT determinations found		
СО	N/A – No BACT determinations found		

T-BACT: There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

Reg 8, Rule 2 – Organic Compounds from Miscellaneous Operations §8-2-110 (revised 4/24/2018)

This rule for organic compound emissions exempts any operation consisting entirely of natural

Drying Oven, Direct Fired, Natural Gas-Fired Dryer for Molded Paper Products, \leq 20 MMBtu/hr Page 7 of 14

gas, and therefore does not apply.

<u>Reg 9, Rule 3 – Inorganic Gaseous Pollutants; NOx from Heat Transfer Operations §9-3-301</u> (amended 3/17/82)

This rule does not apply to any new or modified heat transfer operation designed for a maximum heat input of less than 264 GJ (250 MMBtu).

San Joaquin Valley APCD

BACT: Source: <u>SJVAPCD BACT Clearinghouse (Searchable)</u>

SJVUAPCD BACT Guideline 1.5.6 B (10/15/2014) - Metal Heat Treatment Oven, Natural Gas Fired, < 5.0 MMBtu/hr			
Pollutant	Achieved in Practice or in the SIP	Technologically Feasible	
VOC	No Standard	No Standard	
NOx	50 ppmv @ 3% O_2 (0.061 lb/MMBtu) and use natural gas fuel	5 ppmv @ 3% O ₂ (0.006 lb/MMBtu) with the use of an SCR system where the unit's exhaust temperature is \geq 500 °F	
SOx	No Standard	No Standard	
PM10	No Standard	No Standard	
PM2.5	No Standard	No Standard	
со	No Standard	No Standard	

SJVUAPCD BACT Guideline 1.6.16 (8/26/1999) - Seed Processing Dryer, Natural Gas Fired, 12 MMBtu/hr

Pollutant	Achieved in Practice or in the SIP	Technologically Feasible
VOC	No Standard	No Standard
NOx	20 ppmv @ 3% O_2 (Low-NOx burner, with LPG as backup fuel)	9 ppmv @ 3% O ₂ (SCR, LTO or equal) $^{(A)}$
SOx	No Standard	No Standard
PM10	No Standard	No Standard
PM2.5	No Standard	No Standard
со	No Standard	No Standard

(A) SCR and LTO were determined to be not cost effective.

Drying Oven, Direct Fired, Natural Gas-Fired Dryer for Molded Paper Products, \leq 20 MMBtu/hr Page 8 of 14

SJVUAPCD BACT Guideline 1.6.21 (10/31/2002) - Flake Cereal Dryer, Natural Gas Fired, Conveyor-fed, 8 MMBtu/hr			
Pollutant	Achieved in Practice or in the SIP	Technologically Feasible	
VOC	No Standard	No Standard	
NOx	20 ppmv @ 3% O ₂ (Low-NOx burner or equal)	9 ppmv @ 3% O_2 (Ultra-Low NOx burner or equal) ^(A)	
SOx	No Standard	No Standard	
PM10	No Standard	No Standard	
PM2.5	No Standard	No Standard	
СО	No Standard	No Standard	
СО	No Standard	No Standard	

(A) 9 ppmv Ultra-Low NOx burner was determined to be not cost effective.

SJVUAPCD BACT Guideline 1.9.9 (2/20/2001) - Molded Paper Products Dryer, Natural Gas Fired, 4.8 MMBtu/hr			
Pollutant	Achieved in Practice or in the SIP	Technologically Feasible	
VOC	No Standard	No Standard	
NOx	80 ppmv @ 3% O ₂ (standard burner)	 9 ppmv @ 3% O₂ (Ultra-Low NOx burner, Selective Catalytic Reduction (SCR), or equal) 20 ppmv @ 3% O₂ (Low-NOx burner) 	
SOx	No Standard	No Standard	
PM10	No Standard	No Standard	
PM2.5	No Standard	No Standard	
СО	No Standard	No Standard	

Drying Oven, Direct Fired, Natural Gas-Fired Dryer for Molded Paper Products, < 20 MMBtu/hr Page 9 of 14

SJVUAPCD BACT Guidelines 1.6.8 A (4/14/1995) and 1.6.8 B (3/13/2015) - Pistachio Nut Dryer, Natural Gas Fired, 6.9 MMBtu/hr			
Pollutant	Achieved in Practice or in the SIP	Technologically Feasible	
VOC	 Natural gas, or LPG for operations with no access to a natural gas pipeline 	No Standard	
NOx	 Low NOx burner and natural gas @ 0.0832 lb-NOx/MMBtu (68.5 ppmvd @ 3% O₂), or Low NOx burner and LPG @ 0.1248 lb-NOx/MMBtu (102.8 ppmvd @ 3% O₂) for operations with no access to a natural gas fuel source 	No Standard	
SOx	 PUC quality natural gas, or LPG for operations with no access to a PUC natural gas pipeline 	No Standard	
PM10	 Natural gas, or LPG for operations with no access to a natural gas pipeline 	No Standard	
PM2.5	No Standard	No Standard	
СО	No Standard	No Standard	

<u>T-BACT</u>: There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

Rule 4309 – Dryers, Dehydrators, and Ovens (adopted 12/15/2005)

This rule applies to any dryer, dehydrator, or oven that has a total rated heat input of \geq 5.0 MMBtu/hr.

SJVUAPCD Rule 4309 Emission Standards ppmvd @ 3% O ₂ ^(B) Rule 4309 §5.2, Table 1 for Gaseous Fuel Fired					
Process Description NOx limit ^(B) CO Limit ^(B)					
Other processes ^(A) 40.5 ppm 395.6 ppm					

(A) Excludes asphalt/concrete plants and milk, cheese, and dairy processing.

(B) Rule 4309's limits are in ppmvd @ 19% Oxygen. The values listed in the table have been corrected to 3% O₂ for comparison purposes.

Drying Oven, Direct Fired, Natural Gas-Fired Dryer for Molded Paper Products, < 20 MMBtu/hr Page 10 of 14

<u>Summary of Achieved in Practice Control Technologies:</u> The following control technologies have been identified and are ranked based on stringency:

	SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES		
VOC	1. No standard [EPA, ARB, SMAQMD, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD]		
NOx	 18 ppmvd @ 3% O₂, Low-NOx burner [EPA] (A) 20 ppmvd @ 3% O₂, Low-NOx burner [SMAQMD, SCAQMD, SJVAPCD] 30 ppmvd @ 3% O₂, Low-NOx burner and use natural gas fuel [ARB, SCAQMD] 40.5 ppmvd @ 3% O₂ [SJVAPCD] 50 ppmvd @ 3% O₂ [SJVAPCD] 68.5 ppmvd @ 3% O₂ [SJVAPCD] 80 ppmvd @ 3% O₂ [SJVAPCD] Natural gas fired with LPG as a backup fuel [SJVAPCD] No standard [SDCAPCD, BAAQMD, SJVAPCD] 		
SOx	 Natural gas fueled [SMAQMD, SCAQMD] No standard [EPA, ARB, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD] 		
PM10	 Natural gas fueled [SMAQMD, SCAQMD] No standard [EPA, ARB, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD] 		
PM2.5	 Natural gas fueled [SMAQMD] No standard [EPA, ARB, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD] 		
CO	 395.6 ppmvd @ 3% O₂ [SMAQMD, SJVAPCD] No standard [EPA, ARB, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD] 18 ppmvd @ 3% O₂ ow-NOx burner determination found in the EPA clearinghouse was 		

(A) The 18 ppmvd @ 3% O2, Low-NOx burner determination found in the EPA clearinghouse was discounted as it was determined to not be technologically feasible for this application. For further information, see the discussion under the Technologically Feasible Alternatives for NOx section below.

The following control technologies have been identified as the most stringent, achieved in practice control technologies:

BEST CONTROL TECHNOLOGIES ACHIEVED			
Pollutant	Standard	Source	
VOC	No standard	EPA, ARB, SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD	
NOx	20 ppmvd @ 3% O ₂ , Low-NOx burner	SMAQMD, SCAQMD, SJVAPCD	
SOx	Natural gas fueled	SMAQMD, SCAQMD	
PM10	Natural gas fueled	SMAQMD, SCAQMD	
PM2.5	Natural gas fueled	SMAQMD	
СО	395.6 ppmvd @ 3% O ₂	SMAQMD, SJVAPCD	

B. <u>TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.):</u>

Technologically Feasible Alternatives:

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible by the Air Pollution Control Officer.

The table below shows the technologically feasible alternatives identified as capable of reducing emissions beyond the levels determined to be "Achieved in Practice" as per Rule 202, §205.1.a:

Pollutant	Technologically Feasible Alternatives	
voc	No other technologically feasible option identified	
NOx	 5 ppmvd @ 3% O₂ (0.006 lb/mmBTU), SCR system where the unit's exhaust temperature is ≥ 500 °F [SJVAPCD] 9 ppmv @ 3% O₂, Ultra-Low NOx burner, Selective Catalytic Reduction (SCR), or equal [SJVAPCD] 	
SOx	No other technologically feasible option identified	
PM10	No other technologically feasible option identified	
PM2.5	No other technologically feasible option identified	
со	No other technologically feasible option identified	

Technologically Feasible Alternatives for VOC:

Although no technologically feasible alternatives were identified for VOC, the applicant identified the following controls and discussed their technological feasibility:

- Carbon Adsorber Not technologically feasible due to high exhaust temperatures and VOC composition (majority could be alcohols).
- Biofilter Not technologically feasible due to the lack of PM10 control upstream.
- Catalytic Oxidizer Not technologically feasible due to the lack of PM10 control upstream.
- Regenerative Thermal Oxidizer Technologically feasible.

Technologically Feasible Alternatives for NOx:

The following technologically feasible alternatives were identified for NOx and discussed below for technological feasibility:

- Ultra-Low NOx Burner Although the applicant has proposed a Maxon Ultra-Low NOx burner that has achieved 9 ppm NOx in lab testing, the burner manufacturer is only able to guarantee 20 ppm NOx for this application. For drying molded paper products, a turndown ratio of 4:1 and an operating temperature between 350 to 500 °F is required to ensure that the drying oven does not unevenly heat or burn the paper product being dried. Additionally, the burner manufacturer has identified the following issues which preclude an emission guarantee below 20 ppm (i.e., therefore excluding 9 ppm NOx and 18 ppm NOx as being technologically feasible):
 - The layout of the drying oven results in the flow of process air being perpendicular to the firing of the burner, which can disrupt the flow pattern and increase NOx generation;

Drying Oven, Direct Fired, Natural Gas-Fired Dryer for Molded Paper Products, \leq 20 MMBtu/hr Page 12 of 14

- Tight air fuel ratio control, back pressure, and recirculation air parameters, as well as space constraints within the drying oven restrict any changes to the proposed configuration and NOx generation; and
- With the applicant's required 4:1 turndown ratio, 20 ppm NOx is the lowest emission guarantee for the range of 100% to 25% of the maximum firing rate.

For these reasons, the burner manufacturer has stated that 20 ppm NOx is the lowest technologically feasible control for this application. However, as per CH&SC Section 40723, if, after conducting a review pursuant to Section 40723(b), the District determines that the BACT requirements are not achievable by a source, the District shall revise those requirements to a level achievable by that source.

 Selective Catalytic Reduction (SCR) – Not technologically feasible due to the exhaust gas temperature (350 to 380 °F) operating below the optimum temperature range of 480 to 800 °F.

Technologically Feasible Alternatives for PM10:

Although no technologically feasible alternatives were identified for PM10, the applicant identified the following controls and discussed their technological feasibility:

- Baghouse Not technologically feasible due to fire risks from uneven heating and burning
 of the molded paper products and fouling of the filter bags from the potential presence of
 sticky materials from the heating of the molded paper products.
- Electrostatic Precipitation (ESP) Not technologically feasible due to the exhaust gas flow rate (4,500 acfm) being below the range necessary for this technology to work effectively (typically 100,000 to 200,000 acfm).
- Venturi Scrubber (Wet Scrubber) Technologically feasible.

After eliminating the technologically infeasible options of carbon adsorber, biofilter, catalytic oxidizer, ultra-low NOx burner meeting 9 ppm or 18 ppm, SCR, baghouse, and ESP above, regenerative thermal oxidizer and venturi scrubber were identified as technologically feasible alternatives.

Cost Effectiveness Determination:

After identifying the technologically feasible alternatives, a cost analysis is performed to take into consideration economic impacts for all technologically feasible controls identified.

Maximum Cost per Ton of Air Pollutants Controlled

A control technology is considered to be cost-effective if the cost of controlling one ton of that air pollutant is less than the limits specified below (except coating operations):

<u>Pollutant</u>	t Maximum Cost (\$/ton)	
ROG	17,500	
NOx	24,500	
PM10	11,400	
SOx	18,300	
CO	TBD if BACT triggered	

Drying Oven, Direct Fired, Natural Gas-Fired Dryer for Molded Paper Products, < 20 MMBtu/hr Page 13 of 14

Regenerative Thermal Oxidizer Cost Effectiveness Analysis

As shown in Attachment D, the cost effectiveness for the add-on regenerative thermal oxidizer to control VOC was calculated to be \$163,497 per ton (see Attachment D – Regenerative Thermal Oxidizer Cost Effectiveness Analysis). The following basic parameters were used in the analysis.

Cost of VOC Removal = \$163,497 per ton reduced		
VOC Removed	=	1.30 tons
Total Annual Cost	=	\$212,547
Indirect Annual Cost	=	\$97,230
Direct Annual Cost	=	\$115,317
Indirect Cost	=	\$108,912
Direct Cost	=	\$505,661
Equipment Life	=	20 years
VOC Baseline Level	=	1.35 tons VOC/year
VOC Control Level	=	95%

Since this exceeds the \$17,500 per ton cost effectiveness threshold for VOC, the add-on regenerative thermal oxidizer is considered not cost effective and is eliminated.

Venturi Scrubber Cost Effectiveness Analysis

As shown in Attachment E, the cost effectiveness for the add-on venturi scrubber to control PM10 was calculated to be \$11,794 per ton (see Attachment E – Venturi Scrubber Cost Effectiveness Analysis). The following basic parameters were used in the analysis.

PM10 Control Level =	99%
PM10 Baseline Level=	2.20 tons PM10/year
Equipment Life =	12 years
Direct Cost =	\$63,395
Indirect Cost =	\$14,223
Direct Annual Cost =	\$9,034

Indirect Annual Cost = \$16,795 Total Annual Cost = \$25,829 PM10 Removed = 2.19 tons

Cost of PM10 Removal = \$11,794 per ton reduced

Since this exceeds the \$11,400 per ton cost effectiveness threshold for PM10, the add-on venturi scrubber is considered not cost effective and is eliminated.

C. <u>SELECTION OF BACT:</u>

Based on the above analysis, BACT for VOC, NOx, SOx, PM10, PM2.5, and CO will remain at what is currently achieved in practice.

BACT FOR DRYING OVEN, DIRECT FIRED, NATURAL GAS FIRED, \leq 20 MMBTU/HR, FOR DRYING MOLDED PAPER PRODUCTS			
Pollutant	Standard	Source	
VOC	No standard	EPA, ARB, SMAQMD, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD	
NOx	20 ppmvd @ 3% O ₂ , Ultra-Low NOx burner	SMAQMD, SCAQMD, SJVAPCD	
SOx	Natural gas fueled	SMAQMD, SCAQMD	
PM10	Natural gas fueled	SMAQMD, SCAQMD	
PM2.5	Natural gas fueled	SMAQMD	
СО	395.6 ppmvd @ 3% O ₂	SMAQMD, SJVAPCD	

D. SELECTION OF T-BACT:

There are no Federal NSPS's, NESHAP's nor State ATCM's for this source category. None of the sources surveyed have any toxic T-BACT determinations published. Therefore, T-BACT standards will be considered as meeting the BACT standards identified above.

APPROVED BY:

Brian 7 Krebs

DATE: 08/27/2020

Attachment A

Review of BACT Determinations published by EPA

List of applicable^(A) BACT determinations published in EPA's RBLC Clearinghouse for **Process Code 19.600 (Misc. Boilers, Furnaces, Heaters)**, **Process Code 19.900 (Other Misc. Combustion)**, and keywords "dryer", "heater", and "oven" (note: determinations reviewed under the previous BACT #168 are included in this table for reference in *italics*):

Process Code 19	Process Code 19.600 – Misc. Boilers, Furnaces, Heaters									
Description and Capacity	RBLC ID	Date	Case-By- Case Basis	voc	NOx	SOx	PM10/2.5	со		
Dew Point Heater (Fuel Gas Heater), 16.0 MMBtu/hr, 140 MMcf/year	<u>VA-0328</u>	04/26/2018	BACT-PSD	0 tons/year	0.8000 tons/year (9 ppm), use of ultra low NOx burners	0 tons/year	0.5000 tons/year	2.6000 tons/year		
Natural Gas Fired Fuel Gas Heaters, 15.90 MMBtu/hr	<u>TX-0824</u>	06/13/2017	BACT-PSD	N/A	N/A	N/A	N/A	2,818.7400 tons/year		
Ammonia Converter Start-Up Heater Stack, 20 MMBtu/hr	<u>LA-0306</u>	12/20/2016	BACT-PSD	N/A	N/A	N/A	PM2.5 only: 7.6 Ib/mmcf (0.0076 Ib/MMBtu), use of pipeline quality natural gas, & good combustion practices	84 lb/mmcf (0.084 lb/MMBtu), use of pipeline quality natural gas, & good combustion practices		
Limestone/Dolomite Additive System Air Heater, 23 MMBtu/hr (B)	<u>IN-0185</u>	04/24/2014	BACT-PSD	N/A	0.0120 lb/MMBtu (9.9 ppm), use of low-NOx burners, natural gas only, & good combustion practices	0.0005 lb/MMBtu, use of natural gas & good combustion practices	N/A	N/A		
Graphite Electrode Pitch Impregnation Preheater, 12.00 MMBtu/hr	<u>SC-0142</u>	06/08/2012	BACT-PSD	0.0110 Ib/MMBTU, use of low-NOx burners, annual tune-up, & good combustion practices	0.1000 Ib/MMBtu (82.35 ppm), use of low-NOx burners, annual tune-up, & good combustion practices	N/A	0.023 lb/MMBtu, use of low-NOx burners, annual tune-up, & good combustion practices	0.0830 Ib/MMBtu, use of low-NOx burners, annual tune-up, & good combustion practices		

Process Code 19	Process Code 19.900 – Other Misc. Combustion									
Description and Capacity	RBLC ID	Date	Case-By- Case Basis	voc	NOx	SOx	PM10/2.5	со		
Pulp Dryer and Pulper, 1,320 tons/day	<u>WI-0268</u>	02/19/2019	BACT-PSD	1.0000 Ib/ADTFP and 7.1000 ton/month (12- month average), use of low VOC- containing materials	N/A	N/A	N/A	N/A		
Yankee Dryer (for crepe paper drying directly on heated cylinder/roller), natural gas-fired	<u>AL-0326</u>	05/30/2018	BACT-PSD	N/A	N/A	N/A	0.2100 lb/MDTFP, 7.8000 tons/year	N/A		
Clearcoat Drying Oven, 6.82 MMBtu/hr	<u>TN-0161</u>	12/03/2012	BACT-PSD	N/A	3.1000 lb/hr (371 ppm), use of low-NOx burners	N/A	N/A	N/A		
Automotive Coating Drying Oven, 6.47 MMBtu/hr	<u>TN-0160</u>	10/10/2008	BACT-PSD	N/A	0.0500 Ib/MMBtu (41.2 ppm), use of low-NOx burners or equivalent control	N/A	N/A	N/A		
Process Heater, 10 MMBtu/hr	<u>FL-0286</u>	01/10/2007	BACT-PSD	2.0000 grains/100 scf gas	0.0950 Ib/MMBtu (78.2 ppm)	2.0000 grains/100 scf gas	2.0000 grains/100 scf gas	0.0800 Ib/MMBtu		

Keyword search	"dryer" a	nd "oven"						
Description and Capacity	RBLC ID	Date	Case-By- Case Basis	voc	NOx	SOx	PM10/2.5	со
Steel Mill Curing Ovens, natural gas fired	<u>TX-0882</u>	01/17/2020	BACT-PSD	0 lb/MMBtu	0.1000 lb/MMBtu (82.4 ppm), use of good combustion practices & clean fuel	0.0006 Ib/MMBtu, use of good combustion practices & clean fuel	0.0075 Ib/MMBtu, use of good combustion practices & clean fuel	0.0820 Ib/MMBtu, use of good combustion practices & clean fuel
Finish Mill Air Heaters, 16.70 MMBTU/HR	<u>IN-0312</u>	06/27/2019	BACT-PSD	0.0054 lb/MMBtu	50.0000 lb/MMcf (41.2 ppm)	N/A	N/A	8,657.0000 tons/year
Space Heaters, 20.00 MMBtu/hr	<u>WI-0292</u>	04/01/2019	BACT-PSD	0.0055 lb/MMBtu	N/A	N/A	N/A	0
Ladle Preheaters, 15.00 MMBtu/hr	<u>OH-0379</u>	02/06/2019	BACT-PSD	N/A	2.1200 lb/hr (114.5 ppm)	N/A	0.1120 lb/hr	1,764.0000 lb/hr
Natural Gas Fired Line Heater, 1.50 MMBtu/hr	<u>WI-0291</u>	01/28/2019	BACT-PSD	N/A	0.1000 lb/MMBtu (82.4 ppm)	N/A	N/A	N/A
Combined Collection/Curing Operations for Mineral Wool Manufacturing: Gutter Exhaust, Spinning Chamber, Curing Oven & Hoods, and Cooling Section (oven size claimed to be confidential), 18,950 scfm (30,000 Nm ³ /hr)	<u>WV-0030</u>	04/30/2018	BACT-PSD	78.0200 lb/hr, use of afterburner, good combustion practices, & 40 CFR 63 Subpart DDD compliance	14.5500 lb/hr (either: 600 ppm, assuming max applicable rated heat input of 20 MMBtu/hr; or 30 ppm, assuming low NOx burner standard and 400 MMBtu/hr max rated heat input), use of low NOx burner & good combustion practices	0.0100 lb/hr, use of natural gas	21.2100 lb/hr, use of wet electrostatic precipitator	35,644.0000 tons/year (CO ₂ e), use of natural gas & good combustion practices

Two Natural Gas Heaters (Dew Point Heaters), 9.90 MMBtu/hr each	<u>FL-0364</u>	03/21/2018	BACT-PSD	0.0050 Ib/MMBtu	N/A	N/A	N/A	N/A
Fiberglass Curing Oven, 25.2 MMBtu/hr, natural gas-fired	<u>WV-0027</u>	09/15/2017	BACT-PSD	N/A	0.5900 lb/ton glass pulled (3- hour average), use of low NOx burner and FGR	N/A	N/A	N/A
Coating Ovens, < 10 MMBtu/hr, natural gas-fired	<u>IN-0278</u>	02/01/2017	BACT-PSD	0.0050 Ib/MMBtu, use of natural gas only & good combustion practices	N/A	N/A	N/A	N/A
Alloy Plant Strip Dryer, 1.37 MMBtu/hr	<u>AL-0307</u>	10/09/2015	BACT-PSD	0.0060 Ib/MMBtu, use of good combustion practices	0.0700 Ib/MMBtu (57.68 ppm), use of Iow-NOx burner	N/A	N/A	0.0300 Ib/MMBtu, use of good combustion practices
Steel Manufacturing Small heaters and dryers	<u>AR-0140</u>	09/18/2013	BACT-PSD	0.0054 Ib/MMBtu, use of natural gas and good combustion practices	0.0800 Ib/MMBtu (66 ppm), use of Iow-NOx burner and good combustion practices	0.000588 Ib/MMBtu, use of natural gas and good combustion practices	0.000588 Ib/MMBtu, use of natural gas and good combustion practices	0.0824 Ib/MMBtu, use of natural gas and good combustion practices
Inlet Air Heater, 16.10 MMBtu/hr	<u>WY-0070</u>	08/28/2012	BACT-PSD	N/A	0.0120 Ib/MMBtu (9.9 ppm), use of ultra low NOx burner	N/A	N/A	0.0800 Ib/MMBtu, use of good combustion practices
Wood Veneer Dryer, 1-4 Heated Zones Controlled by Regerative Catalytic/Thermal Oxidizer	<u>LA-0259</u>	01/31/2012	BACT-PSD	5.5 lb/mmcf (0.0055 lb/MMBtu)	50 lb/mmcf (41.5 ppm), use of low-NOx burners	N/A	N/A	84 lb/mmcf (0.084 lb/MMBtu)

Slag Mill Dryer, 75.4 TPH	<u>LA-0239</u>	05/24/2010	BACT-PSD	0.0073 Ib/MMBtu, use of good combustion practices	0.0490 Ib/MMBtu (40.39 ppm), use of Iow-NOx fuel combustion	2000 grains/mmcf natural gas	0.0100 Ib/MMBtu, use of good combustion practices	0.1120 Ib/MMBtu, use of good combustion practices
Steel Mill Line 1 Post-Dryer, 7.70 MMBtu/hr	<u>AL-0287</u>	03/25/2010	BACT-PSD	0.0055 Ib/MMBtu	0.0600 Ib/MMBtu (49.5 ppm)	0.0006 Ib/MMBtu	0.0076 Ib/MMBtu	0.0600 Ib/MMBtu
Steel Mill Ladle Dryer, 5.00 MMBtu/hr	<u>IA-0087</u>	05/29/2007	BACT-PSD	N/A	100 lb/mmcf (82.4 ppm), use of good combustion practices	N/A	N/A	84 lb/mmcf (0.084 lb/MMBtu)
Dryer or Oven, 5.40 MMBtu/hr	<u>NC-0115</u>	01/06/2007	BACT-PSD	N/A	18.0000 ppmvd @ 3% O ₂ , use of low-NOx burner	N/A	N/A	N/A

(A) "Applicable" criteria included: dryer or heater, rated < 20 MMBtu/hr, direct fired, natural gas-fired, application for drying product.

(B) Listed in the EPA RBLC as 19 MMBtu/hr maximum heat input capacity, but later corrected to 23 MMBtu/hr in the <u>PSD/Significant Source Modification Permit</u> and therefore excluded from the scope of this determination.

= Excluded from the scope of this determination according to the following criteria: NOx > 20 ppm, burner rated > 20 MMBtu/hr, paper/pulp process rate > 50 tons/day, indirect heaters, boilers, thermal oxidizers, coke ovens, coating oven VOC emissions, curing oven VOC emissions, baked goods oven VOC emissions, dehydrators, dryer/coolers, germ dryers, grain dryers, paint sludge dryers, space heaters, air heaters, air supply make up units, hot oil heaters, fuel gas heaters, spray dryers, ladle and tundish dryers (for metal casting), Yankee dryers, determinations made on a case-by-case basis other than BACT

= Selected as the most stringent BACT determination achieved in practice. However after further analysis was found to not be technologically feasible for this application.

Attachment B

Review of BACT Determinations published by ARB

List of BACT determinations published in ARB's BACT Clearinghouse for **Dryer or Oven**, **Direct or Indirect** (note: determinations reviewed under the previous BACT #168 are included in this table for reference in *italics*):

Capacity	Source	Date	NOx	voc	со	PM10
4.0 MMBtu/hr ^(A)	<u>SCAQMD</u>	12/01/1999	30 ppmvd @ 3% O2	N/A	2000 ppmvd @ 15% O ₂	0.1 grains/scf
6 MMBtu/hr ^(B)	<u>SCAQMD</u>	05/01/2000	60 ppmvd @ 3% O ₂	N/A	N/A	N/A
3.5 MMBtu/hr, Average load equals 1.5 MMBtu/hr ^(C)	<u>SCAQMD</u>	10/27/2001	30 ppmvd @ 3% O2	N/A	N/A	N/A
5 MMBtu/hr ^(D)	<u>SCAQMD</u>	02/06/2002	30 ppmvd @ 3% O₂	For powder coating operation only: 780 Ib/month (facilitywide)	N/A	N/A
5.4 MMBtu/hr ^(E)	<u>SCAQMD</u>	12/07/2001	18 ppmvd @ 3% O ₂	N/A	N/A	N/A
1.9 MMBtu/hr ^(F)	<u>SCAQMD</u>	05/27/2003	30 ppmvd @ 3% O ₂	N/A	N/A	5 ppmvd
96 MMBtu/hr ^(G)	<u>SCAQMD</u>	01/02/1997	6 ppmvd @ 15% O ₂	N/A	N/A	2000 ppmvd @ 15% O ₂

(A) Dryer used to soften polystyrene sheet.

(B) Tenter frame fabric dryer used to dry cotton and cotton blended fabrics.

- (C) Tumbler dryer used for drying clothes (commercial laundry)
- (D) Conveyorized powder coating curing oven with a maximum turn-down requirement of 5:1 and 400-600 °F operating temperature.
- (E) Polyethylene resin melting and curing; NOx limit requested as RECLAIM concentration limit.
- (F) Direct-fired makeup air heater to control booth temperature; 70-130 °F operating temperature.
- (G) Conveyorized three-zone, 8-layer (no other notes given in description).
 - = Dryer/oven not similar in size or application to direct-fired drying of molded paper products and therefore not part of the scope of this determination.
 - = Selected as the most stringent BACT determination achieved in practice.

Attachment C

BACT Determinations Published by SCAQMD

Section III: Other Technologies

Application No.: 376463

Equipment Category – Dryer or Oven--Others, Direct and Indirect Fired

1.	GENERAL INFORMATION				DATE:	6/15/2	001			
A.	MANUFACTURER:									
В.	TYPE: Direct hot air dryers and tunned	l dryer	С. М	ODEL:						
D.	STYLE:									
E.	APPLICABLE AQMD REGULATION XI RULES:									
F.	COST: \$ (2000) SOURC	E OF CO	ST DATA:	1						
G.	OPERATING SCHEDULE: 24 HRS/D	AY		5 DA	YS/WK			52 W	KS/YR	
•								_		
2.	EQUIPMENT INFORMATION				APP. NO	570				
A.	FUNCTION: Drying plastic packaging m			~			-	-	<u> </u>	
	Direct hot air streams used to dry ma final drying.	terials	betwe	en co	lor stat	ions ar	id tur	nnel (dryer us	ed for
В.	SIZE/DIMENSION/CAPACITY: Hot air production	on 1 N	MMBtu	ı∕hr: T	ับทุกค1	drver:	1 MN	MBtu	/hr	
C.	BLOWERS: 1.5 hp blower for each burn		1		OW RATE:	ory er.	scf			
	plus 20 hp exhaust blower						301			
E.	MATERIAL STORED/PROCESSED/HANDLED:									
F.	THROUGHPUT/PROCESS RATE/USAGE RATE:									
•										
3.	COMPANY INFORMATION				APP. NO	376	463			
3. ^	COMPANY INFORMATION				APP. NO	376	463 в.	. si	C CODE:	2759
	NAME: Lawson Mardon Packaging ADDRESS: 1120 E. Sandhill Ave.					376	B.			2759
A	NAME: Lawson Mardon Packaging		STA	.πε: C	APP. NO	376		. sı		2759
A	NAME: Lawson Mardon Packaging ADDRESS: 1120 E. Sandhill Ave.		STA	.τε: C	A	: 376	B. ZIP:	9074		2759
A C. D.	NAME: Lawson Mardon Packaging ADORESS: 1120 E. Sandhill Ave. CITY: Carson CONTACT PERSON: Dan Garvey		STA	.πe: C	А. Е. РН	ONE NO.:	8. ZIP: 310	9074	46	2759
A C. D.	NAME: Lawson Mardon Packaging ADDRESS: 1120 E. Sandhill Ave. CITY: Carson CONTACT PERSON: Dan Garvey PERMIT INFORMATION		1		A E. PH	ONE NO.: 376	в. zip: <u>310</u> 463	9074 9-631	46 -6170	2759
A C. D. A	NAME: Lawson Mardon Packaging ADORESS: 1120 E. Sandhill Ave. CITY: Carson CONTACT PERSON: Dan Garvey PERMIT INFORMATION AGENCY: SCAQMD		1		A E. PH APP. NO ION TYPE:	ONE NO.: 376	B. 2IP: 310 463 constr	9074 1-631 ructic	46 -6170 on	2759
A C. D. A C.	NAME: Lawson Mardon Packaging ADDRESS: 1120 E. Sandhill Ave. CITY: Carson CONTACT PERSON: Dan Garvey PERMIT INFORMATION AGENCY: SCAQMD AGENCY CONTACT PERSON: Bijan Ataian		B. A	PPLICAT	A E. PH APP. NO ION TYPE:	ONE NO.: 376 new (ONE NO.:	8. ZIP: 310 463 constr 909	9074 -631 ructio	46 -6170 on -2454	
A C. D. A	NAME: Lawson Mardon Packaging ADORESS: 1120 E. Sandhill Ave. CITY: Carson CONTACT PERSON: Dan Garvey PERMIT INFORMATION AGENCY: SCAQMD	P/C N	в. а	PPLICAT 6519	A E. PH APP. NO ION TYPE:	ONE NO.: 376 new (ONE NO.: ISS	B. 2IP: 310 463 constr	9074 -631 ructic -396 DATE:	46 -6170 m -2454 1/19/20	001
A C. D. A. C. E.	NAME: Lawson Mardon Packaging ADDRESS: 1120 E. Sandhill Ave. CITY: Carson CONTACT PERSON: Dan Garvey PERMIT INFORMATION AGENCY: SCAQMD AGENCY CONTACT PERSON: Bijan Ataian PERMIT TO CONSTRUCT/OPERATE INFORMATION: CHECK IF NO PIC	P/C N P/O N	в. а	PPLICAT	A E. PH APP. NO ION TYPE:	ONE NO.: 376 new (ONE NO.: ISS	8. ZIP: 310 463 constr 909 UANCE	9074 -631 ructic -396 DATE:	46 -6170 on -2454	001
A C. D. A C.	NAME: Lawson Mardon Packaging ADDRESS: 1120 E. Sandhill Ave. CITY: Carson CONTACT PERSON: Dan Garvey PERMIT INFORMATION AGENCY: SCAQMD AGENCY CONTACT PERSON: Bijan Ataian PERMIT TO CONSTRUCT/OPERATE INFORMATION:		в. а	PPLICAT 6519	A E. PH APP. NO ION TYPE:	ONE NO.: 376 new (ONE NO.: ISS	8. ZIP: 310 463 constr 909 UANCE	9074 -631 ructic -396 DATE:	46 -6170 m -2454 1/19/20	001
A C. D. A. C. E.	NAME: Lawson Mardon Packaging ADDRESS: 1120 E. Sandhill Ave. CITY: Carson CONTACT PERSON: Dan Garvey PERMIT INFORMATION AGENCY: SCAQMD AGENCY CONTACT PERSON: Bijan Ataian PERMIT TO CONSTRUCT/OPERATE INFORMATION: CHECK IF NO PIC		в. а	PPLICAT 6519	A E. PH APP. NO ION TYPE:	ONE NO.: 376 new (ONE NO.: ISSI ISSI	8. 21P: 310 463 constr 909 UANCE	9074 -631 ructic -396 DATE:	46 -6170 m -2454 1/19/20	001
A C. D. A C. E. F.	NAME: Lawson Mardon Packaging ADDRESS: 1120 E. Sandhill Ave. CITY: Carson CONTACT PERSON: Dan Garvey PERMIT INFORMATION AGENCY: SCAQMD AGENCY CONTACT PERSON: Bijan Ataian PERMIT TO CONSTRUCT/OPERATE INFORMATION: CHECK IF NO P/C START-UP DATE: CHECK IF NO P/C		в. а	PPLICAT 6519	A E. PH APP. NO ION TYPE: D. PH	ONE NO.: 376 new c ONE NO.: ISSI	8. 21P: 310 463 constr 909 UANCE	9074 -631 ructic -396 DATE:	46 -6170 m -2454 1/19/20	001
A C. D. A C. E. F. 5.	NAME: Lawson Mardon Packaging ADDRESS: 1120 E. Sandhill Ave. CITY: Carson CONTACT PERSON: Dan Garvey PERMIT INFORMATION AGENCY: SCAQMD AGENCY CONTACT PERSON: Bijan Ataian PERMIT TO CONSTRUCT/OPERATE INFORMATION:		в. а	PPLICAT 6519	A E. PH APP. NO ION TYPE: D. PH	ONE NO.: 376 new c ONE NO.: ISSI	8. 21P: 310 463 constr 909 UANCE	9074 -631 ructic -396 DATE:	46 -6170 m -2454 1/19/20	001

5.	EMISSION INFORMATION		APP. NO.: 376463
A2.	BACT/LAER DETERMINATION: Use of low-NOx b	ourners guaran	teed to produce less than 20 ppmvd
	NOx (corrected to 3% O2). Use of natu		I II
A3.	BASIS OF THE BACT DETERMINATION: Control of N	Ox to 30 ppm	vd, corrected to 3% O2, and use of
	natural gas were pre-existing BACT. The		
в.	CONTROL TECHNOLOGY		
B1.	MANUFACTURER/SUPPLIER: Eclipse		
B2.	TYPE: WINNOX		
B3.	DESCRIPTION: low-NOx burner		
B4.	CONTROL EQUIPMENT PERMIT APPLICATION DATA:	P/C NO.:	ISSUANCE DATE:
		P/O NO.:	ISSUANCE DATE:
B5.	WASTE AIR FLOW TO CONTROL EQUIPMENT:		FLOW RATE:
	ACTUAL CONTAMINANT LOADING:		BLOWER HP:
B6.	WARRANTY: 20 ppmvd NOx, corrected to	3% O2.	
B7.	PRIMARY POLLUTANTS: NOX, CO, PM		
B8.	SECONDARY POLLUTANTS:		
B9.	SPACE REQUIREMENT:		
B10.	LIMITATIONS:		B11. UNUSED
B12.	OPERATING HISTORY: This printing line is just	st starting up.	
B13.	UNUSED	B14. UNUSE	D
C.	CONTROL EQUIPMENT COSTS		
C1.	CAPITAL COST: CHECK IF INSTALL	LATION COST IS INCL	UDED IN CAPITAL COST
	EQUIPMENT: \$ INSTALLATION: \$	(2000)	SOURCE OF COST DATA:
C2.	ANNUAL OPERATING COST: \$ (2000)	SOURCE	OF COST DATA:
D.	DEMONSTRATION OF COMPLIANCE		
D1.	STAFF PERMFORMING FIELD EVALUATION:	_	
	ENGINEER'S NAME: INSPE	ECTOR'S NAME:	DATE:
D2.	COMPLIANCE DEMONSTRATION:		
D3.	VARIANCE: NO. OF VARIANCES:	DATES:	
	CAUSES:		
D4.	VIOLATION: NO. OF VIOLATIONS:	DATES:	
	CAUSES:		
D5.	MAINTENANCE REQUIREMENTS:		D6. UNUSED
D7.	SOURCE TEST/PERFORMANCE DATA RESULTS AND ANALYS		
	DATE OF SOURCE TEST: No source test require		EEFFICIENCY:
		OVERALL	EFFICEINCY:
	SOURCE TEST/PERFORMANCE DATA:		
	OPERATING CONDITIONS:		
	TEST METHODS:		

6. COMMENTS

APP. NO.: 376463

The low-NOx burner supplier, Eclipse, indicates that this burner can be generally used in most flexographic presses, and the 20 ppm guarantee applies in most cases. The guaranteed NOx level will, however, be higher for an oven that operates at positive pressure or above 1000 deg F. Potential retrofit issues include turndown (the burner is capable of a turndown ratio of from 5 to 10 and thus would not be suitable where a higher turndown ratio is required) and physical fit. Physical fit problems often can be overcome since the burner is externally mounted, and the flame is fully contained in the housing.

Although in this case the dryers are being used in conjunction with a printing press, the principle of transferability makes this technology potentially applicable to other direct and indirect-fired dryers and ovens.

Application No.: 360365

Equipment Category –

Dryer or Oven - Others, Direct and Indirect Fired

1.	GENERAL INFORMATION			DATE:	10/11/	1999			
A.	MANUFACTURER: n/a			•					
В.	TYPE: conveyorized powder coating curin oven with one 3,700,000 BTU per hour natural gas fired low-NOx burner	<u> </u>	MODEL: RNER: Max	Oven: con, Mo		clomax			
D. E.	STYLE: APPLICABLE AQMD REGULATION XI RULES:								
Ru	Rule 1107: Coating Of Metal Parts and Products								
Ru	le 1171: Solvent Cleaning Operations								
F.	COST: \$ () SOURCE OF (COST DA	TA:						
G.	OPERATING SCHEDULE: 16 HRS/DAY		7 DA	AYS/WK		52 v	/KS/YR		
2.	EQUIPMENT INFORMATION			APP. NO	3603	365			
A.	FUNCTION: The oven is used to cure powde	r coat	ings.						
В.	MAXIMUM HEAT INPUT: 3,700,000 BTU/HR	C.	MAXIMUM	THROUGH	HPUT:				
D.	BURNER INFORMATION: NO.: one T	YPE: N	Maxon Cy	ycloma	x (low	-NOx bu	rner)		
E.	PRIMARY FUEL: Natural Gas Fired	F.	OTHER FL	JEL:					
G. OVe	OPERATING CONDITIONS: Relatively steady-state en temperature is around 400 degrees Fahre	-		around	70% c	apacity.	The typical		
3.	COMPANY INFORMATION			APP. NO	: 3603	365			
A.	NAME: Rainbow Coating, Inc.								
В.	ADDRESS: 21029 Osborne Street								
	CITY: Canoga Park		STATE: C	A		ZIP: 9130)4		
C.	CONTACT PERSON: Mr. Chris Kontos			D. PH	ONE NO .:	(818) 72	7-9828		
4.	PERMIT INFORMATION			APP. NO	: 3603	365			
A.	AGENCY: SCAQMD								
В.	AGENCY CONTACT PERSON: Asha G. Rawal			C. PH	ONE NO.:	(909) 39	6-2506		
D.	PERMIT TO CONSTRUCT INFORMATION: P	/C NO.:	360365		ISSU	IANCE DATE:			
Ε.	START-UP DATE: n/a								
F.	PERMIT TO OPERATE INFORMATION: PA	/O NO.:	F22510		ISSU	ANCE DATE:	10/13/1999		

÷					
5.	EMISSION INFORMATION		APP. NO.:	360365	
Α.	PERMIT]			
A1.	PERMIT LIMIT: Facility VOC emissions not	to exceed 667	lbs/month		
A2.	BACT/LAER DETERMINATION:				
NO	x: =< 30 ppm at 3% oxygen				
vo	C: use of Regulation XI compliant mate	erials			
В.	CONTROL TECHNOLOGY				
B1.	MANUFACTURER/SUPPLIER: Maxon				
B2.	TYPE: Cyclomax low-NOx burner				
B3.	DESCRIPTION:				
B4.	CONTROL EQUIPMENT PERMIT APPLICATION DATA:	P/C NO.: same a	as oven	ISSUANCE	DATE:
		P/O NO.: same a	as oven	ISSUANCE	DATE:
B5.	WASTE AIR FLOW TO CONTROL EQUIPMENT:		FLOW RATE:		
	ACTUAL CONTAMINANT LOADING:		BLOWER HP:		HP
B6.	WARRANTY:				
B7.	PRIMARY POLLUTANTS: NOx, CO, VOC, and	PM10			
B8.	SECONDARY POLLUTANTS: none				
B9.	SPACE REQUIREMENT: n/a				
B10.	LIMITATIONS: The following limitations ap	ply to the Cycl	lomax burn	er:	
(1)	Oven temperature < 800 degrees Fahren				
	Maximum turndown ratio = 15/1				
B11.	LOCATION OF PRIOR DEMONSTRATION & AGENCY:				
	FACILITY:				
	CONTACT PERSON:		PHONE NO .:		
	AGENCY:				
	ADDRESS:		DHONE NO :	_	
	CONTACT PERSON:		PHONE NO .:		
	OPERATING HISTORY:				
B13.	SOURCE TEST/PERFORMANCE DATA ANALYSIS: DATE OF SOURCE TEST:	CADTURE	EFFICIENCY:	_	
	DESTRUCTION EFFICIENCY:		EFFICEINCY:		
	PERFORMANCE DATA:	OVEIGLE	EITIGENGT.		
814					
C.	COST	ource test is no	ot required.		
C. C1.		LATION COST IS INCLU	UDED IN CADITAL	COST	
			SOURCE OF CO		Manufactures
C2.	\$2,000 3		SOURCE OF CO		Manufacturer
	DEMONSTRATION OF COMPLIANCE		5551152 01 00	er entre.	1
D.	STAFF PERMFORMING FIELD EVALUATION:				
1 .		ECTOR'S NAME:		DAT	E:

5.	EMISSION INFORMATION	APP. NO.: 360365
D2.	COMPLIANCE DEMONSTRATION:	
D3.	VARIANCE: NO. OF VARIANCES: CAUSES:	DATES:
D4.	VIOLATION: NO. OF VIOLATIONS: CAUSES:	DATES:
D5.	FREQUENCY OF MAINTENANCE:	
6.	COMMENTS	APP. NO.: 360365

The \$2,000 cost included in section 5C1 is the differential cost for a low-NOx burner for this application. The equipment cost for the Cyclomax burner was approximately \$4,000.

Section I: AQMD BACT Determinations

Application No.: 385818

Equipment Category – Dryer or Oven

1.	GENERAL INFORMATION	DATE: 5/13/2003	
Α.	MANUFACTURER: Industrial Process Equ	pment	
В.	TYPE: Conveyorized	C. MODEL:	
D.	STYLE:		
Ε.	APPLICABLE AQMD RULES:		
F.	COST: \$ (NA) SOUR	CE OF COST DATA:	
G.	OPERATING SCHEDULE: 8 HRS/DA	r 5 DAYS/WK 5	2 WKS/YR
2.	EQUIPMENT INFORMATION	APP. NO.: 385818	
A.	FUNCTION: Powder coat curing oven, 4	00-600F operating temperature.	
В.	MAXIMUM HEAT INPUT: 5 MMBtu/hr	C. MAXIMUM THROUGHPUT:	
D.	BURNER INFORMATION: NO.: 1	TYPE: Low-NOx	
Е.	PRIMARY FUEL: Natural Gas	F. OTHER FUEL: None	
G.	OPERATING CONDITIONS: Eight hours per d	ay.	
3.	COMPANY INFORMATION	APP. NO.: 385818	
A.	NAME: Fletcher Coating	В.	SIC CODE: 3479
C.	ADDRESS: 426 Fletcher Ave.		
	CITY: Orange	STATE: CA ZIP: 9	2865
D.	CONTACT PERSON: Kurtis Breeding	E. PHONE NO.: 714-0	537-4763
4.	PERMIT INFORMATION	APP. NO.: 385818	
A.	AGENCY: SCAQMD	B. APPLICATION TYPE: new constru	uction
C.	AGENCY CONTACT PERSON: Fred Del Rosar	D. PHONE NO.: 909-3	396-2663
Е.	PERMIT TO CONSTRUCT/OPERATE INFORMATION:		TE: 2/6/2002
	CHECK IF NO P/C	P/O NO.: F48686 ISSUANCE DA	TE: 2/6/2002
F.	START-UP DATE: December 2002		
5.	EMISSION INFORMATION	APP. NO.: 385818	
Α.	PERMIT		
A1.	PERMITLIMIT: 30 ppmvd NOx, corrected limit of 780 lb per calendar month.	l to 3% O2, 30-minute average. Facili	ty-wide VOC
A2.	BACT/LAER DETERMINATION: Low-NOx Bur	ner	
A3.	BASIS OF THE BACT/LAER DETERMINATION:		

5.	EMISSION INFORMATION	_	APP. NO.:	385818	
В.	CONTROL TECHNOLOGY]			
B1.	MANUFACTURER/SUPPLIER: Eclipse				
B2.	TYPE: Low-NOx				
B3.	DESCRIPTION: WINNOX Model WX-500				
B4.	CONTROL EQUIPMENT PERMIT APPLICATION DATA:	P/C NO.:		ISSUANCE DATE:	
		P/O NO.:		ISSUANCE DATE:	
B5.	WASTE AIR FLOW TO CONTROL EQUIPMENT:		FLOW RATE:		
	ACTUAL CONTAMINANT LOADING:		BLOWER HP:		
B6.	WARRANTY: Burner manufacturer literatur	e shows NOx	<30 and CO) <250 (both	
	ppmvd@3%O2) down to 10% of rated	input.			
B7.	PRIMARY POLLUTANTS: NOX, CO, VOC PM				
B8.	SECONDARY POLLUTANTS:				
B9.	SPACE REQUIREMENT:				
B10.	LIMITATIONS:				B11. UNUSED
B12.	Oven started operation	in December	2002 and h	as been in serv	vice without
	problems since that time. The oven has				
	poor market conditions.		-	-	
B13.	UNUSED	B14. UNUSED			
C.	CONTROL EQUIPMENT COSTS				
C1.	CAPITAL COST: CHECK IF INSTAL	LATION COST IS INCL	UDED IN EQUIPM	ENT COST	
	EQUIPMENT: \$ INSTALLATION: \$	(NA) SOURCE	OF COST DATA:	1	
C2.	ANNUAL OPERATING COST: \$ (NA)	SOURCE	OF COST DATA:	1	
D.	DEMONSTRATION OF COMPLIANCE			_	
D1.	STAFF PERMFORMING FIELD EVALUATION:				
	ENGINEER'S NAME: INSP	ECTOR'S NAME:		DATE:	
D2.	COMPLIANCE DEMONSTRATION:	_			
D3.	VARIANCE: NO. OF VARIANCES: None	DATES:			
	CAUSES:				
D4.	VIOLATION: NO. OF VIOLATIONS: None r	elated to oven	DATES:		
	CAUSES:				
D5.	MAINTENANCE REQUIREMENTS:				D6. UNUSED

EMISSION INFO	ORMATION		APP. NO.:	385818
SOURCE TEST/PERFORMANCE	DATA RESULTS AND ANA	LYSIS:		
DATE OF SOURCE TEST: 12	2-30-2002	CAPTURE EF	FFICIENCY:	
DESTRUCTION EFFICIENCY:		OVERALL EF	FICIENCY:	
SOURCE TEST/PERFORMANCE	DATA:			
k, ppmvd@3%O2	16			
ppmvd@3%O2	14			
% (dry)	19.05			
aust Flow, dscfm	1560			
the oven was operat: TEST METHODS: Source group. However, it	ing at approximat test was accepted was noted that th	tely 20% rated inp by AQMD Monit e NOx measureme	ut. Over toring & ent was l	n temperature was 585F. Source Test Engineering
	_			
	SOURCE TEST/PERFORMANCE DATE OF SOURCE TEST: 12 DESTRUCTION EFFICIENCY: SOURCE TEST/PERFORMANCE C, ppmvd@3%O2 ppmvd@3%O2 % (dry) aust Flow, dscfm OPERATING CONDITIONS: If the oven was operation the oven was operation TEST METHODS: Source group. However, it	SOURCE TEST/PERFORMANCE DATA RESULTS AND ANA DATE OF SOURCE TEST: 12-30-2002 DESTRUCTION EFFICIENCY: SOURCE TEST/PERFORMANCE DATA: (, ppmvd@3%O2 16 ppmvd@3%O2 14 % (dry) 19.05 aust Flow, dscfm 1560 OPERATING CONDITIONS: Indicated fuel input the oven was operating at approximat TEST METHODS: Source test was accepted group. However, it was noted that the	SOURCE TEST/PERFORMANCE DATA RESULTS AND ANALYSIS: DATE OF SOURCE TEST: 12-30-2002 CAPTURE EN- DESTRUCTION EFFICIENCY: OVERALL EF SOURCE TEST/PERFORMANCE DATA: C, ppmvd@3%O2 16 ppmvd@3%O2 14 % (dry) 19.05 aust Flow, dscfm 1560 OPERATING CONDITIONS: Indicated fuel input rate and measure the oven was operating at approximately 20% rated input TEST METHODS: Source test was accepted by AQMD Moning group. However, it was noted that the NOx measurement operating conditions: C	SOURCE TEST/PERFORMANCE DATA RESULTS AND ANALYSIS: DATE OF SOURCE TEST: 12-30-2002 CAPTURE EFFICIENCY: DESTRUCTION EFFICIENCY: OVERALL EFFICIENCY: SOURCE TEST/PERFORMANCE DATA: C, ppmvd@3%O2 16 ppmvd@3%O2 14 % (dry) 19.05 aust Flow, dscfm 1560 OPERATING CONDITIONS: Indicated fuel input rate and measured flue g the oven was operating at approximately 20% rated input. Over

requires a maximum turn-down of approximately 5:1. Some ovens require turn-down ratios greater than 10:1, and this burner would not be suitable for those ovens.

Attachment D

Regenerative Thermal Oxidizer Cost Effectiveness Analysis

RTO Cost Estimate

Direct Costs								
Total Purchased equipment costs (in 2020 dollars)								
Incinerator + auxiliary equipment ^a (A) =								
Equipment Costs (EC) for Regenerative	$=[2.664 \times 100,000 + (13.98 \times (2020 \text{ CEP})/2016 \text{ CEP})] =$	¢220.625	in 2020 dollars					
Oxidizer Qtot)] x (2020 CEPI/2016 CEPCI) = \$329,635 in 2020 dolla								
Instrumentation ^b =	0.10 × A =	\$32,964						
Sales taxes =	0.03 × A =	\$9,889						
Freight =	0.05 × A =	\$16,482						
Тс	otal Purchased equipment costs (B) =	\$388,970	in 2020 dollars					
Footnotes								
a - Auxiliary equipment includes equipm								
included with unit furnished by incinerat b - Includes the instrumentation and cor								
vendor.	arols furnished by the memerator							
Dir	ect Installation Costs (in 2020 dollars)	l .						
Foundations and Supports =	0.08 × B =	\$31,118						
Handlong and Errection =	0.14 × B =	\$54,456						
Electrical =	0.04 × B =	\$15,559						
Piping =	0.02 × B =	\$7,779						
Insulation for Ductwork =	0.01 × B =	\$3,890						
Painting =	0.01 × B =	\$3,890						
Site Preparation (SP) =		\$0						
Buildings (Bldg) =	T . 15:	\$0						
	Total Direct Installaton Costs = Total Purchase Equipment Costs	\$116,691						
	(B) + Total Direct Installation Costs							
Total Direct Costs (DC) =	=	\$505,661	in 2020 dollars					
Total Indirect Installation Costs (in 2020 dollars)								
Engineering =	0.10 × B =	\$38,897						
Construction and field expenses =	0.05 × B =	\$19,448						
Contractor fees =	0.10 × B = 0.02 × B =	\$38,897						
Start-up = Performance test =	0.02 × B = 0.01 × B =	\$7,779 \$3,890						
renormance test =	0.01 × B =	\$3,890						

	Total Indirect Costs (IC) =	\$108,912
		J100,J12
Continency Cost (C) =	CF(IC+DC)=	\$61,457

Total Capital Investment =	DC + IC +C =	\$676,029	in 2020 dollars
	Direct Annual Costs		
	Direct Annual Costs		
	= Fan Power Consumption ×		
	Operating Hours/year × Electricity		
Annual Electricity Cost	Price =	\$17,781	
Annual Fuel Costs for Natural Gas	= Cost _{fuel} × Fuel Usage Rate × 60	¢62 461	
Allitual Fuel Costs for Natural Gas	min/hr × Operating hours/year Operator = 0.5hours/shift × Labor	\$63,461	
	Rate × (Operating hours/8		
Operating Labor	hours/shift)	\$10,617	
	Supervisor = 15% of Operator	\$1,593	
	Labor = 0.5 hours/shift × Labor		
	Rate × (Operating Hours/8		
Maintenance Costs	hours/shift)	\$10,933	
	Materials = 100% of maintenance	ć10.000	
	labor	\$10,933	
Direct Annual Costs (DC) =		\$115,317	in 2020 dollars
		<i>,,.</i>	
	Indirect Annual Costs		
	- CON/ of ourse of opporting		
	= 60% of sum of operating, supervisor, maintenance labor and		
Overhead	maintenance materials	\$20,445	
Administrative Charges	= 2% of TCI	\$13,521	
Property Taxes	= 1% of TCI	\$6,760	
Insurance	= 1% of TCI	\$6,760	
Capital Recovery	= CRF[TCI-1.08(cat. Cost)]	\$49,743	
		, -	
Indirect Annual Costs (IC) =		_\$97 230_	in 2020 dollars
			In Loco donai 5
Total Annual Cost =	DC + IC =	\$212,547	in 2020 dollars
	Cost Effectiveness		

Cost Effectiveness = (Total Annual Cost)/(Annual Quantity of VOC/HAP Pollutants Destroyed)

Total Annual Cost (TAC) =	\$212,547	per year in 2020 dollars
VOC/HAP Pollutants Destroyed =	= 1.30 tons/year	
		per ton of pollutants removed in
Cost Effectiveness =	\$163,497	2020 dollars

Attachment E Venturi Scrubber Cost Effectiveness Analysis

VENTURI SCRUBBER COST EFFECTIVENESS CALCULATION

EPA AIR POLLUTION CONTROL COST MANUAL, Sixth Edition, EPA/452/B-02-001, January 2002 Section 1 - Introduction, Chapter 2 - Cost Estimation: Concepts and Methodology (November 2017) Section 6 - Particulate Matter Controls, Chapter 2 - Wet Scrubbers for Particulate Matter (July 2002)

Capital Costs

Indirect Costs (installation)				
Total Direct Cost, DC	1.	56 B + SP + Bldg.	\$	63,395
Buildings		As required, Bldg.	\$	-
Site Preparation		As required, SP	\$	-
Direct installation costs		0.56 B	\$	22,757
Painting		0.01 B	\$	406
Insulation for ductwork		0.03 B	э \$	1,219
Piping		0.01 B 0.05 B	\$ \$	2,032
Handling & erection Electrical		0.40 B 0.01 B	\$ ¢	16,255 406
Foundations & supports		0.06 B	\$	2,438
Direct installation costs				
Purchased equipment costs, PEC	B =	1.24 A	\$	40,638
Freight		0.05 A	\$	1,645
California Sales taxes		0.085 A	Ψ \$	2,797
Instrumentation (replacement parts)	Total = A	0.10 A	\$ \$	32,905 3,291
Equipment Costs (assumed to be included per Section 6, Chapter 2	· · · -		\$	-
Auxiliary Costs (assumed to be included per Section 6, Chapter 2,			\$	-
Venturi Packaged Unit (Qsat = 3,090 acfm)		4.5 Qsat + 19,000	\$	32,905
Purchased equipment costs				
Direct Costs	<u>F</u>	actor		<u>Cost</u>

(continued on next page)

Annual Costs			
Direct Annual Costs, DAC	Factor		<u>Cost</u>
Operating Labor			
Operator labor cost, O			
(\$20/hr, 0.125 hr/8 hr shift,8760 hr/yr)		\$	2,738
	% of O	\$	411
Operating Labor Total, OL		\$	3,148
Maintenance Labor			
Labor, L (\$20/hr, 0.125 hr/8 hr shift, 8760 hr/yr)		¢	0 700
		\$	2,738
Supervisor labor cost 15		\$	411
Material 100'	% of L	\$	2,738
Total DAC		\$	9,034
Indirect Annual Costs, IAC			
Overhead 60'	% OL+ML	\$	5,420.25
	% DC+IC	\$	1,552
	% DC+IC	φ \$	776
	% DC+IC	Ψ \$	776.18
Capital recovery		φ	770.10
Equipment Life (years): 12 Interest: 4% 0.10655	52 DC+IC	\$	8,270.36
Total IAC		\$	16,795
		Ŧ	
Total Annual Cost	DAC + IAC	\$	25,829

Emission Control Cost Calculation - Venturi Scrubber								
Annual PMControl EfficiencyReduction in PMControl CPollutant(tons/year) (A)% (B)(tons/year)(\$/Ton Re								
Particulate Matter (PM) 2.20 99.0% 2.19 \$ 1								
 (A) Based on applicant's annual operation limit of 24 hours/day and 266 days/year. (B) Based on Yorke Engineering's assumption in the original application for this drying oven, P/O 25271. 								